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ANALYSIS OF TEMPERATURE DISTRIBUTION IN LIQUID-COOLED TURBINE BLADES®

By Joax N. B. Livixcoop and W, BrRoN Brown

SUMMARY

The temperature distribution in liguid-cooled turbine blades
determines the amount of cooling required to reduce the blade
temperature to permissible ralues at specified locations. This
report presents analytical methods for computing temperature
distributions in liguid-cooled turbine blades, or in simplified
shapes used to approximate sections of the blades.

The individual analyses are first presented in terms of their
mathematical development. By means of numerical examples,
comparisons are made between simplified and more complete
xolutions and the effects of sereral variables are examined.
Nondimensional charts. to simplify some temperature-
distribution calculations are also given.

It was found that for blade materials having low thermal
conductivities (corresponding to blade materials in current use)
a one-dimensgional spanwise temperature-distribution equation
iz applicable near a coolant passage. The cooled part of the
blade, irrespective of blade length, was found to remain at a
determinable uniform temperature, called the prevalent blade
temperature. The prevalent blade temperature increased about
150° F for an increase in the difference between the effeciive gas
temperature and the coolant temperature of 1000° F for a range
of effective gas temperature from 2000° to 6000° F.

In cases where rim cooling 18 insignificant, it was found that a
one-dimengional chordwise temperature-distribution eguation
was sufficiently near the relaxation solution for the actual blade
shape for a first-order approximation.

INTRODUCTION

A limitation on design and performance of aircraft gas-
turbine power plants is the strength of the turbine materials,
which decreases as temperature increases. This limitation
may be greatly alleviated, even when nonstrategic materials
are used, by the application of turbine cooling. An extensive
study of both liquid and air cooling of turbine blades has been
carried out at the NACA Lewis laboratory since 1945.

The temperature distribution in & turbine blade determines
the amount of cooling required to reduce the blade tempera-
ture to permissible values at specified locations. Analytiecal
studies have been conducted to predict temperature distribu-
tions in cooled turbine blades. A summary of the analytical
methods developed for calculating spanwise temperature
distributions for three types of air-cooled turbine blade is
presented in reference 1. The present report summarizes
the analytical methods developed for calculating temperature
distributions in liquid-cooled turbine blades. Parts of these
analyses are presented in references 2 and 3.

Because the calculation of a generalized three-dimensional
temperature distribution through a liquid-cooled turbine
blade is too tedious to be of practical value and because some
knowledge of the distribution in a radial direction is neces-
sary, the first investigation presented herein is limited to a
one-dimensional spanwise distribution.
however, is valid only in the immediate vicinity of the
coolant passages. In order to study more accurately the
temperature distribution in the trailing section of the blade,
a three-dimensional solution is determined for & rectangular
parallelepiped used to approximate a blade trailing section.
This solution serves to determine the importance of blade
thermal conductivity and of distance from the coolant. pas-
sage. Because numerical calculations for s rectangular
parallelepiped produce & constant spanwise temperature in
the region of the blade beyond the influence of rim cooling
(that is, in the region of the blade unaffected by conduction
to the rim), one-dimensional chordwise temperature distribu-
tions are then celculated for shapes approximating various
parts of a blade cross section; these investigations are valid
for the part of the blade beyond the influence of rim cooling.
Finally, a two-dimensional temperature distribution through
the cross section of an actual blade shape is obtained in order
to determine the accuracy of the previously determined
approximate solutions and to study the effect on temperature
distribution of a peripheral variation of gas-to-blade heat-
transfer coefficient. )

Numerical examples based on coefficients available from
unclassified sources are included.

METHODS OF ANALYSIS

One-dimensional spanwise, three-dimensioneal, one-dimen-
sional chordwise, and two-dimensional chordwise temperature-
distribution equations for liquid-cooled turbine blades
or for simplified shapes used to approximate sections of

This distribution, o

liquid-cooled turbine blades are presented. For simplicity

in presentation, the individual analyses are first formulated
in terms of the mathematical methods. The comparative
applicabilities of the methods of analysis are established in
later sections of the report.

For all the analyses presented, the following conditions are
assumed:

(1) The coolant temperature is constant at the average
temperature of the coolant, or the coolant forms a constant-
temperature reservoir. This assumption is valid when the
change in coolant temperature is small in comparison with

the temperature difference between the gas and the coolant. -

1 Supersedes NACA TN 2321, “Analysis of Temperature Distribation in Liquid-Cooled Turbine Blades™ by John N. B. Livingood and W. Byron Brown, 1951,
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(2) The blade-to-coolant heat-transfer coefficient is con-
stant.

(3) The thermal conductivity of the blade is constant.

(4) The effective gas temperature at all parts of the blade
is the same,

(5) Radiation effects are considered to be included in_the
heat-transfer coeficients. 'The following individual analyses
are presented:

One-dimensional spanwise temperature distribution.—A
one-dimensional spanwise celculation gives a radial tempera-
ture distribution valid in a part of the blade near a coolant
passage. In this particular case, the radial temperature
distribution is carried through the blade and through the
turbine rotor. Heat transfer between the turbine rotor and
the fluid on the outside of the rotor ig assumed to take place
and a constant value of gas-to-blade heat~transfer coefficient
is assumed. For simplicity, & blade of constant cross-
sectional area and perimeter is considered.

For blades with little taper, the method is applicable if
average cross-sectional area and perimeter are considered.
In general, however, & numerical solution is necessary for
tapered blades.

Three-dimensional temperature distribution through sim-
plified trailing section.—A three-dimensional temperature
distribution for the trailing section of the blade is obtained
by considering this part of the blade as a rectangular
parallelepiped. The blade-root temperature is considered
constant, the gas-to-blade heat-transfer coefficient is constant,
and it is assumed that no heat flows across the median plane
of the simplified blade section.

An approximate solution for tapered blades is obtainable
by this method if the blade is considered in smaell sections,
average values of cross-sectional area and perimeter are
considered for each section, and appropriate compatibility
relations are satisfied.

One-dimensional  chordwise temperature distribution
through simplified shapes.—Rectangular and trapezoidal
sections, concentric circle annuli, and sections between
parallel plates are considered as the simplified shapes used
to approximate parts of a turbine-blade cross section.
The gas-to-blade heat-transfer . coefficient is. considered
constant. For comparison purposes, the rectangular and
trapezoidal sections are constructed .so that lengths and
areas are identical.

Two-dimensional chordwise temperature distribution.—
Numerical two-dimensional temperature distributions
through the cross section of an actual blade shape are de-
termined. Constant and variable gas-to-blade heat-transfer
coefficients are considered.

ONE-DIMENSIONAL SPANWISE TEMPERATURE DISTRIBUTION

The spanwise temperature-distribution equations for a
liquid-cooled turbine, a section of which is shown in figure I,
are derived in reference 2 and are reproduced in appen-
dix B. In this spanwise case, the investigation was extended
from blade tip to rotor hub.

For convenience, the turbine was divided into four
sections (fig. 1), and the temperature-distribution equations
were obtained from heat balances for differential elements
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Uncooled section of
blode (section i)

Cooled section of‘—
blode (section £)

. _ FicurE 1.—Arrangement of Internel-cooling pessages In furbine.

in each section. Inasmuch as chordwise conduction was
neglected, the following equations, valid only in the neighbor-
hood of the coolant passages, were obtained. For the
uncooled section of the blade (fig. 1, section 1), it was found
that

TB'1=T3_.—01 COSh A(xl"l‘Og) (1)
where () and ( are integration constants and
_{_hd, )i
A=\t 45

(Al symbols are defined in appendix A.) The value of (%
is determined by use of the boundary condition at the blade
tip (where heat enters by convection only).

ko s (427) =hds.(Tui— T
/T
or

tanh 4 C,= h"AB' ')}

IéTA'
For the cooled section of the blade (fig. 1, section 2), it
was found that

TB, 9=Tg ,— CieBr—(Ce—84 2)
where (3 and (7, are integration constants, -
_holaTg.c‘i"hl.zlt, ETI o
Tor =" Fhdis (2)

and
pe (ks
kBAB 2
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The prevalent blade temperature T, is the temperature
the blade would assume if no heat flows in or out of the blade
ends.

For the rim section (fig. 1, section 3), with assumed con-
stant area,

Trlm= G+ 066&3"' Cse—EI' (3)
where (5 and C are integration constants,

G= [471-)',, ahaTo+ (hy, 3lt. Bas TI:I
4Tr3.arh¢+ (hl, slt.&)a-

E— 47rr8,ath¢+(ht.3li.l)u:|b '
- krimArim

and T, is the Auid temperature on the outside of the rotor
and (h¢ali a)a is the average of the values of Ayl ; found
for the blade coolant passages, the rim ecircumferential
passages, and the radial passages through the rotor (fig. 1).

For the rotor section (fig. 1, section 4), with assumed con-
stant strength,

Tr=J+C: cosh H, $
where (% is an integration constant, and where

drr,, ahe T+ (ht, 4lt, Dar Lt

4Tr4.avh;|.+ (ht.éli. 4)«.

and

H=l:41rr4_ufla+(ht.411.4)ar]b
kpdg

Values of the six intergration constants C,, (s, Ci, (s, Cs,
and (% are found by solving simultaneously the six equations
resulting from equating temperatures and heat flows at the
various junction points of the four sections of the turbine.
(Subseripts « and 8 used after numerical subscripts designate
the end nearest the blade tip and the end nearest the rotor
hub of the sections to which the numerical subseripts refer,
respectively.) At the junctions of sections 1 and 2,

T""_' 01 COSh A(‘.’tl.p-*- 01)= TB.p_ C;eB”-“ _ C_’_Le"'B‘rz,m (5)

L'B[lg. LpCIA sinh A(I[‘p"l' 01)=BIL'34‘13'2'¢(03€BI&“—'
e~ B “)+ht.1(Aa,1,B—AB,2, a) (T8, p— 039312'“—'
( |4e—Blz,m_Tl) (6)

Equation (6) equates the heat leaving section 1 to the sum

of the heat entering the metal of section 2 and the heat
entering the coolant at that part of the blade where the
inlet and outlet passages are connected. An approximation
in the procedure has been introduced at this point because
a separate blade section for the part of the blade containing
the connecting passage between inlet and outlet passages is
not introduced. A numerical caleulation showed that use
of such a section would slightly decrease the temperature at
the blade tip.

At the junction of sections 2 and 3,

TB' P 0383:2'5— 043_322"= G "[' 05€EI="' '+' Cse_&" « (7)

kgAp, 2B (C'aemz' f—C e~ B0 4

Aun—ZAp, hods 2 (T, ,— T ,+ Cse® 284
«ipB, 2
Cie B2 =FEkpds, ZA—A‘:;z (Coe™Era— Cie™e2)  (8)

Equation (8) equates the sum of the heat leaving section
2 and that entering section 3 directly from the hot gases to
the total heat entering section 3.

At the junction of sections 3 and 4,

G+ Cie™36+C e Fa0=J +C; cosh Hr, (9)
fepB(— 'y O~ 50 = j" kepHC sinh Hr.  (10)
tim

THREE-DIMENSIONAL TEMPERATURE DISTRIBUTION THROUGH
SIMPLIFIED TRAILING SECTION

The spanwise temperature-distribution equations previ-
ously presented are valid only in the neighborhood of the
coolant passages. Most currently used turbine blades are
so shaped that coolant passages cannot be located near the
trailing edge. Because of the impossibility of placing reason-
ably large coolant passages near the trailing edges of con-
ventional turbine blades and because the trailing sections
seem most likely to be the hottest parts of the blade, other
detailed studies were made of temperature distributions.
The first study was devoted to approximating the trailing
section by a rectangular parallelepiped and to determining
the three-dimensional temperature distribution through this
parallelepiped (fig. 2).
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FiGURE 2.—Rectangular parallelepiped used to approximate trailing section of 4-Inch turbine
blade for three-dimensfopal analysis.
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The median plane of the rectangular parallelepiped was
chosen as the plane z=0, and symmetry was assumed about
this plane (no heat flow was assumed to cross this plane,
as previously stated). Boundary conditions at the blade
trailing edge and blade tip were simplified by assuming the
blade width and blade length to be extended by a distance
equal to one half the blade thickness. In figure 3, the edge
MN at temperature T gained some heat from the gas stream.
The extended surfaces NO and MP were at nearly the same
temperature T and no heat entered the edge OP; these
surfaces therefore gained practically the same amount of
heat as the actual exposed edge. The validity of this ap-

proximation is discussed in reference 4 (pp. 216 and 217).
Distances increased by 7/2 are denoted by primes.

The derivation of the three-dimensional temperature dis-
tribution, originally derived in reference 3, is reproduced in
appendix C. The differential equation, in final form, for
the temperature distribution is found to be

0% |, 0% , %

b_xﬁ—l—b_gfﬁ_ 35=0 (11)
where 2’ and 9’ denote x and y increased by 7/2, respectively.
A solution of equation (11) satisfying the boundary condi-
tions at ' =y’ =2=0is

7' 0=§1§‘{(Km,n cos L,z’ cosh My, .,y cos N,z
7 2] 0, .cosh P, .z’ cos Q,y cos N,2) (12)
M P
/ /WMV/ TVET where K, L, M, N, O, P, and @ are constants. Relations
coolant 4+ among the constants are
ar I P 2 _\L . 2 2
" M= Nt L }m n=1,2,3 (13)
Fioure 3.—Correction for heat received by tralling edge, Pm, ,.2=Nm2+Q,2 T Sy
Values of K,, 5 and O, , are given by the relations
. T . )
K _ (_l)n—l sin Nm. § Sh{(T,,Q—T;) < 1

e (2n—1) N T sin 2N T kg My o sinh My, .7 4k, cosh M, ,j (14)

m ) m

2 1+ - 2
oN T
2N, 3
and
. T
0. _SB@nf 4(Tp,—Tp) *" Nug 1 1 o
R ( sin 2@, 7 T : 7\ cosh P, .0’ -
1+—pa—% ) Nnz sin 2N, = " {15)
-a,,j 2 1+ : 2
2N, 5

Application of the boundary conditions at 2'=%", ¥’=j’, and 2=r/2 lead to the following methods of evaluating L, @, and

N, respectively:

tan Q,j’=z$é:=ak=‘.’f-. L . L

and
Lot
T__ ha 2]C3 - _ ’ ’
tan N, E_kBNmW : | -(18)

2

It is at once obvious that from equation (16) many values
of L, result. Because of the periodicity of the tangent
function, equations (17). and (18) likewise have many
solutions.

Values for all the constants in equation (12) can thus be
found and the temperature can now be computed at any
point in the rectangular parallelepiped. In reference 3,
appendix B, it is shown that sufficiently accurate results can
be obtained by using m=1 only.

L=(n-D 5

- (16)

h{j,

.

ONE-DIMENSIONAL CHORDWISE TEMPERATURE DISTRIBUTIONS
THROUGH SIMPLIFIED SHAPES

Because the spanwise temperature distributions are valid
only in the neighborhood of the coolant passages and because
the three-dimensional approximate solution resulted in a
constant spanwise blade temperature in the part of the blade
beyond the influence of rim cooling, one-dimensional chord-
wise temperature distributions were determined for sections
of & liquid-cooled turbine blade that can be approximated
by simple shapes (fig. 4). Rectangular and trapezoidal
approximations for blade trailing sections were considered.
Trapezoidal sections may also be used to approximate the
leading section in some blades. In addition, analyses were
made for leading sections approximated by conceniric circle
annuli and for the sections of blades with very little metal he-
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FrsURE 4. —8implifed shapes used in one-dimensional chordwlse analysis,

tween blade outer surface and coolant passages approximated
as regions between parallel plates. The temperature distri-
butions through these simplified shapes, derived in appendix D
and valid in regions beyond the influence of rim cooling, follow.

Rectangular trailing section of blade removed from
influence of rim cooling.—For a blade trailing section
approximated by a rectangle (fig. 4(a)) the temperature-
distribution equation is

_’f! (Tl G‘Tt) cosh oy’
0= 19)
¢ sinh ¢J + cosh e’
where
=T, ,— T
and
=(‘ 28\
\kBT

Trapezoidal trailing section of blade removed from in-
fluence of rim cooling.—For a trapezoidal approximation to
the blade trailing section (fig. 4(b)), the temperature dlStI'l-
bution is

iy (g T [HG R LGOI ELGED]
g 25Fs - (20)
16 ) ELG )] — [H1<1m.f1(m)1+‘,§2; iy

where ( o
. a0 T1 1—tan
§'_2Kl:y T S tany
_ (I —tan )4
;',-_2K[ 2 tan ¢
. ., Ti{l—tan Y) T

E=(5am)

—tan-172T1
Y=tan 27

1‘=H1(?:§'1)Jo(li'x)-i-th(‘li’x)lHo(?vi'.’)

and J,, 1J,, H,, and 1H; are Bessel functions. For a wedge-
shaped section the temperature-distribution equation (20)
reduces to

hite .
o 3Kk, (T o—T0) Jo(i}) (21)
kb . R
2ngBJa(1'§_ﬂ)_1'J1(1§-2)

Concentric-circle-annulus approximation for blade leading
section.—The equations expressing the Llade-metal tem-
perature at the coolant passage wall T 4, at the leading edge
of the blade Ts,, and at any point in the annulus Ty are
found to be (fig. 4(c))

5 2ks _
TB’ = Tl+ [Diht Iog. (%)]}(TB'O-TB' ‘) (2 2)
i

J}(Tx.o—Tx.t) (23)

R L -
T5..="T. _{I:Doh" log. (%)

and
IOg, (:5—)
Te=T5:+—FH< (TB,o_TB.i) (24)
log, ( D.
where
TB,o—TB,£= T“_T' ~ - (25)

(_D_> (D ho ! Dzh,)

Section of blade approximeted by paraliel plates.—The
equations expressing the blade-metal temperatures at the
coolant-passage wall (fig. 4 (d)) Ts.: and at the blade outer
edge Ty, are

TI+ ° ¢,4+htTI)
TB(= (26)
s R
1+(—~Uhoht)<ho+h,)
and
,.+ (h.T et+hTY)

1+( )(h LA

where ¢ is the distance between the parallel plates.
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TWO-DIMENSIONAL CHORDWISE TEMPERATURE DISTRIBUTION

The temperature at any point on the blade cross section
may be found by solving the Laplace differential equation
given in terms of the temperature difference ¢

2% %
axitars¢

where X and Y are the Cartesian coordinates in the blade
cross section. The boundary conditions, expressed in
terms of the partial derivative of 6 in the direction normal
to the boundary, are

(28)

08 h
S @9)
at the outer boundary and
08 _ Ay
an ]C (Tls l_o) (30)

at the coolant-passage boundary.

A closed solution to equation (28) cannot be obtained

because of the impossibility of applying the given houndary
conditions along the odd-shaped boundary of a turbine
blade (fig. 5). A numerical solution is available, however,
by application of the relaxation method (reference 5). A
sketch of the blade cross section is covered by a network of
points (a square network was chosen). Large net spacings
are recommended aft first, and the insertion of additional
net points may be made at any time during the solution,
thus permitting the use of a final network of any desired
gize. Temperature estimates for the net points can be obtained
from the solutions of the chordwise blade-temperature-
distribution equations for approximate shapes previously
presented and from application of the boundary conditions
given by equations (29) and (30).. Residuals, which may
be considered as interior heat sinks, can then be calculated
at each net point whose immediately neighboring points
remain within the boundary from the relation

Qo="0,+0;+ 63+ 8,—48,

where the subscript zero denotes & point in the blade cross
section and subscripts 1, 2, 3, and 4 denote the points in
the square surrounding the point with zero subscript.

1)

. |

FraUBe 5.—Turbine-blade section showing coolant passages.

The object of the relaxation is to reduce the values of
@ to zero, or as close to zero as possible. When the rclaxa-
tion equation (31) is employed, the following procedure is
used. A change in 8, alters @, Q,, Qs, @, by the same change
and Q, by minus four times this change, all other values of 8
remaining fixed.

Equation (31) is the finite-difference equation correspond-
ing to the partial differential equation (28). For net points,
some of whose immediately neighboring points lie outside the
boundary, equation (31) must be modified. For example, if
point 1 lies outside the boundary and point 5 is the boundary
point between 0 and 1, the following equation applies:

Qoturt b1+ 00— (343 ) b (32)
where d is the ratio of the distance between points 0 and 5
to the net spacing.

Corresponding changes in the values of @ result from the
use of equation (32). No harm is done by overestimating
the final values of 6, as successive calculations will establish
them again. Continued relaxation eventually reduces all
the residuals as desired and the blade temperaturces can
finally be obtained from the definition of 8,

= Tg. e TB
APPLICATION OF ANALYSIS

Typical numerical examples for a& sample blade are
presented to illustrate temperature trends and to determine
the effects of various factors on the temperature distributions
in a liquid-cooled turbine blade. A turbine blade whose
external shape is similar to that of the rotor-root section of a
conventional gas-turbine design was selected as the sample
blade. Two 0.25-inch-diameter coolant passages iwere
assumed in the blade (fig. 5), connected near the blade tip
by a cross-over passage, and the cooling was assumed to
occur through forced convection. No allowance was made
in these calculations for the effects of free-convection currents
that might be present. A gas flow of 55 pounds per second
(equivalent to a mass velocity of about 58 1b/(sec)(sq ft))
and a coolant flow of 7 pounds per minute per blade were
assumed (to insure turbulent flow and to remowve the depend-
ence of the blade-to-coolant heat-transfer coefficient on the
length-to-diameter ratio of the coolant passage).

For the one-dimensional spanwise case, in which the
cooling was carried to the rotor hub, two 0.25-inch-diameter
coolant passages running circumferentially through the 1im
and ten 0.50-inch-diameter coolant passages running radially
through the rotor were assumed (fig. 1). For this case,
water, ethylene glycol, and kerosene were all considered as
possible coolants. Other calculations were made only for
water as the coolant because of its superiority over the other
coolants considered.

Blade-to-coolant average heat-transfer coefficients were
calculated by use of formulas presented in reference 6,
page 168 for turbulent flow and page 190 for laminar flow
(for ethylene glycol only). Gas-to-blade average heat-
transfer coefficients were calculated by use of formulas given
on. page 236 of reference 6. The following coefficients were
used in the analysis:



ANALYSIS OF TEMPERATURE DISTRIBUTION IN LIQUID-COOLED TURBINE BLADES 175

Qutside heat-transfer coefficient, A,

Btushr) (sq ft) (°F) oo 222
Btuy(see)(sq ft) (°F) o o oo e eme oo 0. 06167
Inside heat-transfer coefficient, h:.2
Water,
Btuy¢hr)(sq £t) (°F) oo oo il 2370
Btu/(sec) (sq ft) (°F) oo oo oo 0. 6583
Ethylene glycol,
Btu/¢thr) (sq £t (°F) oo o 649
Btu/(sec)(sq ft) (°F) o iioa_ 0. 1803
Kerosene,
Bt/ (br) (80 ££) (°F) oo o oo e oo 510

Btu/(see)(sq ft)(°F) o _- 0. 1417

Other numerical values used in the calculations were
(figs. 1 and 4):

Effective gas temperature, Ty, °F_ . ____._ 2000-5000
Average coolant temperature, T, °F.____________________ 200
Number of blades, Z. oo 55
Area of blade cross section 1, Ay, sq ft- - ___._ ... 0. 00198
Area of blade cross section 2, 4, sq £t _____._.___. 0. 0013
Area of cross section 3, As, 8q ft . ________ 0. 312
Area of cross section 4, Ay, sqft_ . .. ___ ... __ 0. 236
Blade outside perimeter, o, fto oo oo .. 0. 2542
Blade inside perimeter, ;s fto oo ... _._.._..... 0.131
Average radial distance, section 8, ryeq. fte-. .- ... .. 0. 4917
Average radial distance, section 4, rya,, fto o . ______ 0. 3333
Length of chordwise trailing seetion, 7, ft_ . ____________. 0. 050
Length of spanwise trailing section, b, £t _ ..~ __________ 0. 3333 .
Thickness of trapezoid at coolant passage, ro, ft ... ..._... 0.021
Thickness of trapezoid at trailing edge, =, ft- .- __.______ 0. 003
Thickness of rectangle, =, ft._ . __________________ 0. 010
Temperature at blade root, T, °F__ . . ... _.______ 330
Thermal conductivity, ks
Btu/ e (Y () - e 15-210
Btu/(sec) (ft) (°F) oo oo- 0. 00417-0. 0583
Cooling-air (in contact with rotor) temperature, T,, °F__.___ 0
Heat-transfer coefficient between cooling air and rotor, kg
Btu/(hr) (8q ft) (°F) o o o e 30
Btu/(sec) (sq ft) (°F) - oo e 0. 00874
Average value in section 3 of [; 3k
Water,
Btu/(hr) (6 (O F) — - o ___ 30, 360
Btu/(see) (Ft) (°F) oo oo 8 433
Ethylene glycol,
Btu/(hr) () (°F) - . 8305
Btu/(sec) (F) (°F) oo oo e 2 307
Kerosene,
Bt/ he) (Ft) (O F) o o _ 6533
Btu/(see) (ft) (CF) o i 1. 815
Average value in section 4 of I; k..
Water,
B/ Chr) (£6) (°F) o oo oo . 6107
Btu/(see) (f6) (°F) oo o oo 1 666
Ethylene glycol,
Btu/ (b (Ft) (°F) - - o o 1656
Btu/(see) (ft) (OF) oo 0. 460
Kerosene,
Btu/ o) (£t (O F) o oo 1318
Btu/(see) (F6) (°F) oo . 0. 366

ONE-DIMENSIONAL SPANWISE TEMPERATURE DISTRIBUTION

The constants of integration were found by solving equa-
tions (5) to (10) for the specific examples stated; a blade
thermal conductivity of 15 Btu/(hr)(ft)(°F) was used.
Blade coolant passages extending to within ¥s inch of the
blade tip were considered in blades with spans ranging from
14s to 4¥s inches, with water as coolant, and for effective
gas temperatures ranging from 2000° to 5000° F in order to

study the effect of blade length on the temperature distri-

bution. The temperature distributions were determined, =~

by use of the calculated integration constants, from equa-
tions (1) to (4) and are shown in figure 6.
trend shown is & nearly constant temperature about equal
to the coolant temperature through the rotor, a sharp tem-
perature increase through the rim and the base of the blade,
a nearly constant temperature (called the prevalent blade
temperature) through the liquid-cooled part of -the -blade,
and another sharp temperature increase to a value approach-
ing the effective gas temperature in the uncooled part of the
blade. From figure 6, it can readily be seen that the same
prevalent blade temperature prevails through blades of
various lengths cooled to within 4, inch of the blade tip.

In order to study the effect of coolant-passage length on
the temperature distribution, other calculations were made,
with water as coolant and for an effective gas temperature
of 2000° F, for a 4{einch blade span but with blade coolant
passages of various lengths. The calculations, again deter-

mined by use of equations (1) to (4), are plotted in figure 7;

for short coolant passages high-temperature gradients exist
throughout the blade, whereas for long coolant passages
practically no temperature gradient exists throughout most
of the blades.
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Z
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% po0 ;L 14 | 3000/
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Rodius, in.

FiguRrE 6.—EfTect of varfous blade lengths on temperature distribution for water-cooled
gas turbine for effective ges temperatures from 2000° to 5000° F. One-dimensional spanwise
analysis. Coolant passages extend to within Us inch of blade tip; coolant flow, 7 pounds
per minate per blade; thermal conductivity of blade, 15 Btu/(hr) (ft) CF).
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Ficrre 7.—Effect of varfous coolant-passage lengths on temperature distribution. One-
dimensfonal spanwise analysis. Blade length, 4}is Inches; coolant flow, 7 pounds per
minate per blade; thermal conductivity of blade, 15 Btu/(hr) (ft) °F).
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The general



176

Culculations were also made for the same blades with
4-inch coolant passages and for an effective gas temperature
of 2000° F with water, ethylene glycol, and kerosene con-
sidered as possible coolants.  These results showing the
effect of various coolants on temperature distribution are
given in figure 8. For an effective gas temperature of 2000° F
and a coolant flow of 7 pounds per minute per blade, the
prevalent blade temperature in degrees Fahrenheit is about
one fourth, two fifths, and one half of the eflective gas
temperature for water, ethylene glycol, and kerosene cool-
ants, respectively. The consideration of cooling air on the
outside of the rotor accounts for the rotor temperature being
less than the coolant temperature.

Finally, for the spanwise case, figure 9 shows the variation
of coolant flow on prevalent blade temperature. The
prevalent blade temperature decreases with increasing
coolant flow; the rate of this decrease diminishes as the ¢ool-
ant flow increases. It can be seen that the cooling effective-
ness, defined as (T ,—T5)/(Ty,— T1), changes from 0.68 to
0.91 for water as the coolant flow is increased from 2 to 16
pounds per minute per blade. The superiorily of water is

apparent.
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2000 : _
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FicURE 8.—Temperature distribution for gas turbine for varfous Hquid coolants. One-
dimensionsl spanwise analysis. Coolant-passege length, 4 Inches; coolant passages extend
to within 34s inch of blade tip; coolant flow, 7 pounds per minute per blade; thermal con-
Quetivity of blade, 15 Btu/(hr) (ft) CF).
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FiguRe 9.—Variation of prevalent blade temperature with coolant flow. One-dimensional
spanwise analysls. Thermal conductivity of blade, 15 Btu/thr) (ft) (°F).
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THREE—D]MENS[ONAL TEMPERATURE DISTRIBUTION THROUGH
- SIMPLIFIED TRAILING SECTION

A three-dimensional temperature distribution in a turbine-
blade trailing section approximated by a rectangular paral-
lelepiped (fig. 2) was determined by use of equation (12)
(approximated by use of m=1 only, as previously mentioned).
The constants L,, @,, and N; were obtained from equations
(18), (17), and (18), respectively; the constants K,,, and
0, , from equations (14) and (15), respectively; and the
constants M, , and P, , from equations (13). The distribu-
tion was found in two planes representing the maximum and
minimum temperatures for the Z-axis; the first plane was
located. at the side of the cross section of the rectangular
parallelepiped and the second plane was on the median plane
through the rectangular parallelepiped. The results are
shown in figure 10(a) for an effective gas temperature of
2000° ¥ and a thermal conductivity of 15 BLu/(hr)(ft)(°F)
and give the temperature distribution at various distances
from the coolant passage. The curve labeled “approxima-
tion of temperature” in figure 10(a) is & onec-dimensional
chordwise distribution through the approximated rectan-
gular trailing section. Similar results, for thermal conduc-
tivities of 120 and 210 Btu/(hr)(ft)(°F), are given in figures
10(b) and 10(c), respectively. Calculation of cosN;r/2 (see
equation (12)) reveals the temperature variation in the two
planes to be about 3.6 percent of ¢ for a blade thermal con-
ductivity of 15 Btu/¢hr){ft}(°F), 0.5 percent for & thermal
condue{ivity of 120 Btu/(hr)(ft)(°F), and 0.3 percent fora
thermaLconductlwt') of 210 Btu/(hr) (ft)(°F). Fora bhexm&l
conductiv ity of 15 Btu/(hr)({t)(°F), figure 10(a) shows &
constanf?temperature for the last three quarters of the blade,

T T T . T
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(8) Thermal conductivity of blade, 15 Btu/(hr) (ft} (°F).
Fmvn 10.—Three-dimensional temperature distribution In trailing section of turbine blade.
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FiitRE 10.—Concluded, Three-dimensional temperature distribution. In trafling section
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Ficere 11.—Comparison of one-dimensional chordwise temperature distribution through
rectangular tralling section with three-dimensional temperature distribution through rec-
tangular parallelepiped. Thermal conductivity of blude, 15 Btu/(br) (ft) CF).

that is, conduction to the rim affects about the first quarter
of the blade length. Figure 10(a) also shows that the level
of the temperature in the principal portion of the blade rises
rapidly as the distance from the coolant passage is increased.
Near the coolant passage, the distribution is in good agree-
ment with the one-dimensional spanwise distribution pre-
sented in figures 6 and 8. As the thermal conductivity is
increased, as shown in figures 10(b) and 10(c), the part of
the blade affected by rim conduction inereases; for a thermal
conductivity of 210 Btu/(hr)(ft) (°F), about two thirds of the
blade length shows this effect.

ONE-DIMENSIONAL CHORDWISE TEMPERATURE DISTRIBUTION
THROUGH SIMPLIFIED SHAPES

Because the three-dimensional distribution resulted in a
constant spanwise blade temperature in the region of the
blade beyond the influence of rim cooling and because the
critical blade point, as determined from a temperature-stress
relation, may likewise be beyond the region of rim-cooling
influence, one-dimensional chordwise temperature distribu-

tions were obtained. Inorderto compare the three-dimen-
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FiaURE 12.—One-dimensional chordwise analysis of effact of shape on prevalent blade tem-
perature, Thermal conductivity of blade, 15 Biuf(hr) (ft) (°F).

sional distribution with a one-dimensional chordwise
distribution, a rectangular trailing section was first consid-
ered. Figure 11 shows this comparison for an effective gas
temperature of 2000° F and a blade thermal conductivity of

15 Btu/(hr)(ft)(°F); the one-dimensional distribution was

determined by use of equation (19). From figure 11 it can
be seen that the trailing-edge temperature increases from
1500° to 1850° F as the distance from the blade root is
increased from 0.25 to 1.0 inch for the three-dimensional case,
even for low-conductivity material. On the other hand, in
the region of the blade beyond the influence of rim cooling
(when the distance from the blade root is 1 in. or more), the
one-dimensional and three-dimensional results approach
identity; for such a region, a three-dimensional solution is
unnecessary when low-conduectivity materials are considered.

In order to more nearly approximate a blade trailing sec-
tion, a trapezoidal approximation was considered. For
comparative purposes the trapezoidal and rectangular sec-

lions were constructed to have equal lengths and areas. In
general, however, the trapezoid is constructed so that tbe
thickness at the coolant passages equals one-half the actual
blade surface exposed to the coolant. This dimension, in
turn, fixes the length of the trapezoid.

The temperature distribution through a trapezoidal see-
tion was obtained by use of equation (20). Such & distri-
bution, for an effective gas temperature of 2000° F and a
blade thermal conduectivity of 15 Btu/(hr)(ft)(°F), is
compared with the distribution through a rectangular sec-
tion in figure 12, The temperature distribution for the
trapezoidal section has a slightly steeper slope than that for
the rectangular section at distances remote from the coolant _
passages ‘and the temperatures at the trailing edge and the
coolant-passage wall are lower. Part of this lower tempera-
ture for_the trapezoidal section is due to the additional thick-
ness of i]:ne cooling surface.

The effect of varying thermal conductivity from 15 to 210
Btu/(hr)(ft) (°F) on the temperature distributions along the
center line of rectangular and trapezoidal sections is shown
in figures 13(a) and 13(b), respectively. In each case, as
thermal conductivity is increased, the temperature distri-
butions flatten and approach linearity, decregsing in the

!
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ture for trailing section of blade.

trailing section and increasing near the coolant passages.
Figure 14 shows blade trailing-edge temperatures for various
thermal conductivities obtained by use of the rectangular
and trapezoidal approximations. Cooling is substantially
greater for the more representative trapezoidal section. For
currently used high-temperature alloys with thermal
conductivities in the neighborhood of 15 Btu/(hr)(ft) (°F),
figure 14 shows a trailing-edge temperature difference for
the rectangular and trapezoidal sections of only about 60°F
for an effective gas temperature of 2000° F.

Chordwise temperatures were also calculated, by use of
equations (22) to (27), for concentric circle annuli and
parallel-plate approximations. These temperatures are not
plotted in this report; they were only used as initial approxi-
mations for the two-dimensional numerical ealculations made
for an actual blade shape.

TWO-DIMENSIONAL CHORDWISE TEMPERATURE DISTRIBUTION

Two-dimensional temperature distributions were deter-
mined for an actual blade shape by application of the relaxa-
tion method. Separate calculations were made for the cases
where an average gas-to-blade heat-transfer coefficient and
where a tvpical variation in the gas-to-blade heat-transfer
coefficient as shown in figure 15 were considered. Initial
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Fiuure 14.—Tralling-edge temperatures obtained from one-dimensional chordwise analysis,
Coolant temperature, 200° F.
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triel solutions were determined by use of equation (20) for
the trailing section, equations (22) to (24) for the leading
section, and equations (26) and (27) for the thin-wall sections
of the blade near the coolant passages. A comparison of
the temperature distributions for assumed variable and
constant gas-to-blade heat-transfer coefficients, for an
effective gas temperature of 2000° F, an average coolant
temperature of 200° F, and a blade thermal conductivity of
15 Btu/(hr)(ft}(°F) is shown in figure 16, The blade
temperatures obtained are nearly the same for both cases
except at the leading and trailing edges. Use of the average
coefficient gives a conservative estimate of the trailing-edge
temperature and a temperature that is somewhat too low
near the leading edge. N

A calculation has also been made for the average gas-to-
blade coefficient and for a blade with a thermal conductivity of
100 Btu/(hr)(f6)(°F). A comparison of this solution with the
similar one for a thermal conductivity of 15 Btu/(hr)(ft) (°F)
is shown in figure 17. The high-conductivity blade has

Gaos-to-blade

heat-transfer

coeffrcient
Variable
Constant

Blode temperoture
(-]

Fraure 16.—Effect of variation of gas-to-blade heat-transfer coefficlent on temperature
distribution through cress section of water-cooled turbine hlade. Thermal conductivity
of blade, 15 Btu/(hr} (ft) (°F); eflective gas temperature, 2000° F; average water tempera-
ture, 200° F.

Thermot
conductivity
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Flaure 17.—Effect of variation of thermal conduetivity oit temperature distribution through
water-cooled turbine blade. (Gas-to-blade heat-transfer coefficlent, 222 Btn/(hr)(sq [t} (°F);
eflective gas temperature ,2000° F :average water temperature, 200° F,

about & 250° and a 600° F lower temperature than the low-
conductivity blade at the leading and trailing edges, respec-
tively. Little temperature difference is obtained in the
center of the blade, where extremely good cooling prevails.

The results of the various relaxation solutions are in good
agreement with the one-dimensional chordwise approxima-
tions that were used to start the numerical solutions; that
is, good representative temperatures are obtainable by use
of one-dimensional chordwise approximations. '

In order to determine the effect of distance from the cool-
ant passage on the trailing-edge temperature, trailing-edge
temperatures were determined for the liquid-cooled blade
with five coolant passages shown in figure 18. Various
length trailing sections were obtained by successively reduc-
ing the length of the trailing section shown in figure 18. The
temperatures were determined by use of equation (20) and
are shown for various thermal conductivities in figure 19.
The trailing-edge temperature is reduced almost linearly as
the length of the trailing section is decreased. The effect of
thermal conductivity also decreases as the trailing-gection
length is decreased.

F1oURE 18.—Cross section of water-cooled turbine blade showing location and size of five
coolant passages used in determination of effect of varying tralling-sectfon length on
treiling-edge temperature.

NONDIMENSIONAL CHARTS

The availability of several nondimensional charts, to be
subsequently discussed, eliminates the necessity for some
numerical calculation.

The prevalent blade temperature is given by equation
(2a) as
7, Tyt hodiaT,

5.7 holoFhy,oli 2

oo (2a)

After division by &, Jy », this equation may be written

T+ 0T,
TB, p=_fj:|_—)“-
where
' h.l,
h o hi. ’.‘lt. 2 )
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Fioere 19.—Trafling-edge temperature as function of length of traillng seetion of blade

for water-cooled turbine blades with five coolant passages and various thermsal condue-
tivities.

Subtraction of T, from both members of this equation
leads to

TI,C_TB.F__ 1
Tee—T, 14X
Z'x.c TB.p

The plot of Z%:—=2Z agninst \ is shown in figure 20.
Tg,a_Tl

For any given blade, A can be evaluated and the value of
Tye=Ta,

Tl.c—'T i
gas and coolant temperatures, a single simple algebraic oper-
ation results in the desired value of the prevalent blade
temperature.

Another nondimensional chart, which gives the one-
dimensional chordwise temperature distribution through a
rectangular section, is also presented in figure 21. The
temperature distribution through a rectangular section is
given by equation (19),

can be obtained. Finally, for the desired effective

Z—:’ (Ty.e— T3) cosh oy’

Tg.c‘—TB= (19)

% "
¢ sinh ¢J’+z_ia cosh ¢

Lo

o / 2 s 4 5
22 hels
Rl
FigUre 20.—Nondimensional chart for use in determination of prevalent blade temperature.

For a given turbine and set of turbine operating conditions,
values can be determined for all the quantities in this equa-
tion. A semilog plot with ¢j’ as abscissa and A,/¢ks as a
parameter results in a nondimensional cooling ratio

TJ.J_TB
(Ty.e—T)) cosh oy’

The addition of a second quadrant, with cosh ¢y’ as param-

eter, yields values of the temperature ratio %:‘—‘:;—,‘! at any
ge LI

point in the rectangular section. This chart is given in
figure 21. The chart is used as follows: A vertical line is
constructed through the calculated value of the abscissa ¢f”
and is extended to the calculated value of the parameter i;/oks.
From this point, a horizontal line is drawn, extending into
the second quadrant, and intersecting several lines repre-
senting various values of cosh ¢y’. Vertical lines from the
intersection points to the abscissa in the second quadrant
Tee=Ts
T [ A T i
Values of the tem-

give values of the temperature ratio at various

positions in the rectangular section.

- perature T'p are then easily obtainable.

In order to illustrate the use of figure 21, a rectangular
section with dimensions equal to those previously tabulated
will be considered. For a blade thermal conductivity of



182 REPORT 1066—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

127 —— .
’ Ll =T ™
; cosh gy NSNS SIS
. oy \\\\ \:\\\\\\ \
P NN NANNY
N AN VANNY
S ANEAS NAAHNAN
g N DY NANY N N
s N INCTNC ARTANAY
$ 6Py 5T . R
< TNEN : \ \
s S W \‘\ - A\l
g | § AVENN
= N2E AN YA
E¢ 4 ~ N B X A |
‘ ~L ]\\ Ny Thermal \ \ A\
& N ~N 15 ‘\\ \_\ \\ : conag?:‘l/wfy \Y
-.7 ~ A AN [ ]
~_%75 [ NG NN R (hr) /?577‘72'” _
2 Tbag N AN, NI o 210 NANNANN ]
- o o oSNNI NGB
N S RSN SN NN\ NANNN
T T TSN AW
0 . — >
10 g 8 7 & b 4 3 2 A g o ‘.02 .04.06 .l 2 4 687 g [
Toe =T _ - vi’
Beem Ty
FiauvkE 21,—Nondimensionel chart for use in determination of temperature distribution through rectangular tralling section of cooled turbine blade,

15 Btu/(hr)(ft)(°F) and outside and inside heat-transfer

coefficients of 222 and 2370 Btu/(hr)(sq ft)(°F), respeec-

tively, the parameters used in figure 21 are evaluated as
2(222)

follows:
; )i
=\Flpr 15(0.01)

hy 2370
P Y WYG T W

The point represented by these parameters is given by the
circle in the first quadrant of figure 21; the square on fig-
ure 21 designates the corresponding point for a thermal con-
ductivity of 210 Btu/(hr) (ft)(°F). A horizontal line pass-
ing through the circle and intersecting the family of lines in
the second quadrant of figure 21 gives as the abscissa of the

second quadrant the values of the temperature ratio 511: ,Erf
ge” 41

]é (0.055)=3

for various positions in the rectangular section as follows:

T .—Ts _

T, —T,=0 .075 for ¢y'=0
=0.115 for oy’ =1
=0.285 for gy’ =2
=0.75 for ¢y’=3

For T, ,=2000° F and T,=200° F, it follows that the blade-
temperature calculation results in the following values:

T5=1865 for oy’ =0 (trailing-edge temperature)
=1793 for ¢y’'=1

=1487 for gy'=2 -~ - . e = oo

=650 for gy’=3 (temperature at coolant passage)

These results compare favorably with the caleulated distri-
bution shown on figure 12,

CONCLUDING REMARKS

Anelyses have been presented for obtaining spanwise
temperature distributions near a coolant passage, chordwise
distributions (for both approximated and actual shapes) in
regions where conduction to the rim is inappreciable, and
three-dimensional distributions for approximated blade
shapes. "Numerical examples based on specific blade con-
figurations and heat-transfer coefficients available from
unclassified sources have been presented. Although the
analyses are exact, the numerical values used in the calcu-
lations may not necessarily be the same as those for cooled
turbines. The numerical examples have been presented to
indicate the range of applicability of the various analyses
and to present the general nature of temperature distribu-
tions in liquid-cooled turbine blades. In the following
paragraphs the more important results are reviewed to show
their general guidance for design studies.

The three-dimensional temperature distribution includes
conduction to the rim, whereas the two-dimensional and
one-dimensional chordwise distributions do not. Conse-
quently, the temperatures obtained from a three-dimensional
investigation are less than those otherwise obtained. As a
result, it is advisable to determine the simplified solutions
first; if the temperatures that result are not excessively high,
& three-dimensional investigation is unnecessary; whereas if
the resulting temperatures are large, a three-dimensional
investigation can be made.



ANALYBIS OF TEMPERATURE DISTRIBUTION IN LIQUID-COOLED TURBINE BLADES

The two-dimensional solution just referred to is of necessity
a numerical solution (because of the varying boundary con-
dition caused by the shape of the blade). It has been shown
by the calculations previously presented that for uniform
outside heat-transfer coefficients, simplified one-dimensional
distributions were in excellent agreement with the two-

dimensional relaxation solution. Yhen variable outside
heat-transfer coefficients were considered, the simplified
solutions indicated optimistic results and the two-

dimensional relaxation solution appears essential. Increasing
blade thermal conduectivity results in raising the cooling
surface temperature and lowering the trailing-edge tempera-
ture and thus in a more uniform blade temperature.

near the coolant passages.
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One-dimensional spanwise distributions proved to be valid
The temperature of the cooled

part of the blade (prevalent blade temperature) was inde-
pendent of blade length. If the inside heat-transfer coeffi-
cient is increased, the prevalent blade temperature decreases;

it

was shown for a particular case that the prevalent blade

temperature for water as coolant was only about half that
for kerosene as coolant.

Lewis Frigat PropuLsion LABORATORY

NaTioNaL Apvisory COMMITTEE FOR AERONAUTICS
CLEvELAND, OHIO, October 27, 1950

APPENDIX A

SYMBOLS
The following symbols are used in this report: Subscripts: ———
A area of metal, sq ft @ air
b blade span, ft ar average
(', ... Cy constants of integration B blade
D diameter of circle used to approximate leading | e effective
section of blade, ft g gas
d ratio of distance between net points 0 and 5 | 7 inside (inner with D)
and net spacing { liquid
Hy ) Hankel functions (specml kinds of Bessel m} C
: summation indices
(H,} function) n
h heat-transfer coefficient, Btu/(sec)(sq ft)(°F) | o outside (outer with D)
or Btu/(hr)(sq ft)(°F) P prevalent
. . L rotor
53 Bessel functions . blade root
J chordwise distance from blade trailing edge to | rim rim
coolant passage, ft T blade tip
e ( __h, )& 1 denote sections in spanwise investigation
kpsin ¢ 2 when used with x; 1 and 2 denote trapezoidal
k thermal conductivity, Btu/(see)({t)(°F) or | 3 thicknesses at trailing edge and coolant
Btu/(hr) (ft) (°F) 4 passage, respectively, when used with r
/ perimeter, ft a} denote end near blade tip and end near rotor
M, N, 0, P points on figure 3 B hub of various sections
Q heat flow, Btu/sec Superseript:
r radial distance from hub of turbine, ft prime linear dimension inereased by /2
T temperature, °F Funetions:
r distance from blade tip to blade element, ft A < Rl \t
y distance from trailing edge to blade element, ft kpAg
Z number of blades B h_lL%EL” 4
- H H H B 41B,2
z dlstlanoo. from median plane of section to blade hol, T oo b sl s TR
element, ft D ( A >
r Hi (@)@ ) Hi1 (@6 H, (65 ) dxry ok J:&u T
{ [: +Tl(—1—taﬂz } E [ Feim Arim
2 tany 475 o0 heTet (hes b dan TV
8 T"'— TB F [ krlm A»rlm :I
hod, F\2
A ht,zlt,z G (E)
¢ distance between parallel plates, ft daryahat (b ali Jar |
T thickness of trailing section, ft B [ ke Ar :I
I [41"‘4.“ h¢T¢+(ht,4ll. 4):: lel*
¥ l; BT, ]\'R Ag
t -1 Ta—T1 J (L)E
i = (57) 2
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K, L, M, N, integration constants (See equations (13) to
0,PQ (18).)
R kgM, . sinh M, .7 +h, cosh M, .’
th oy (1P
Sﬂ r (T‘.G—TI) 2n_1 _

T, 2(T,,

—Te)) sin Q,;' 1 \
A N (1+sin 20,.1"_)
2Q.7

APPENDIX B
ONE-DIMENSIONAL SPANWISE TEMPERATURE DISTRIBUTION

The heat balance for the uncooled_section of the blade
(fig. 1, section 1) is given as follows:

Heat entering by radial conduction= —kBAmddj;B'l
1

Heat entering sides by convection=~,l,(T, .— T ) d2,
Heat leaving by radial conduction

kBABldi (TB l+dTB : 1)

The heat-balance equation is

_kBAB 1dTB 1+h la(T: e'_'TB I)dl‘l
——kpdai (TB A4,

or

a7,

dIIB 1—A2T3 1=_A T‘ e (Bl)
where

=(ga)
kBABl
A solution is
Ts1=T,.— C) cosh A(z;+ Cy) (1)

where C; and C; are integration constants.
For the cooled section of the blade (fig. 1, section 2). the
heat balance is given as follows:

Heat entering by radial conduction=—"FkzAp , Qa%ﬂ
]
Heat entering sides by convection=~,0l,(T; ,— T o) d 7,

Heat leaving by radial conduction=

_I‘-BAB 2T (TB z+dTB 2 xn)
Heat leaving by radial convecf,.ion:h‘_gl‘,g(TB,,— T) dz,

The heat-balance equation is

—kBAB 2 dTB 2"i'k lo(Tl,c TB,&) dxz

=_kBAB 3 o <Ta 2+dTB * dzz)'i"ht.zlt.n(TB.z—-Tt) dx,

or
2
ddff'z—B"TB o=—=D"? B2)
where
(h.,l ot R, ali 2 \}
kpAsg s
and

(h oo T: s+hi ﬂli sT:)i
BAB 2
A solution is
Ts.0="Tp ,— CieB2—Cie~5% (2)

where C3 and C, are integration constants and

=(_-2_ z_u 1:: a+hi 2li ETZ _
B AN A

For the rim section (assumed constant area) of the rotor
(fig. 1, section 3), curvature was neglected because the rim
thickness was small in comparison with the rim radius. In
addition, average values of hyglys and 75 were used. The
heat-balance equation reduced to

S (B3)
where
E= 47”'8 avh +(h{ 351 a)av
krimArlm
and
F= 47”‘8 auh T +(ht 311 S)anTl
krImArlm
A solution is _
Trlm= G+ anEI"‘}' Oﬂe—gz’ (3)

where (s and Cy are integration constants and where

2
o~(z)

For the rotor section (assumed constant strength) (fig. 1,
section 4), average values are used for A J; and for r,, and
an approximste solution (as in section 3) is obtained. Be-
cause the rotor is liquid-cooled, such a solution is adequate.

The resulting differential equation for this section is
d*Tr

75 —H*Ty=—T B4)
where '
s 47Ty ¢+(h£ Alt L
B:= Fzdn
and
IP— 411'1“4,,"’! T +(ht Jl L)szI =
kRL4
A solution is
=J+ C; cosh H, 4)

where (% is an integration constent and where

I 2
J-_:(.E,) ——
The bouadary condition

dT;

i =0 for r==0

has already been applied.
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APPENDIX C

THREE-DIMENSIONAL TEMPERATURE DISTRIBUTION THROUGH SIMPLIFIED TRAILING SECTION

A three-dimensional temperature distribution through a
rectangular parallelepiped, an approximation for the trailing
section of & liquid-cooled turbine blade, is given as follows

(fig. 2):

Heat entering element from top=—kszdydz %{B
. . 3T
Heat entering element from right end=—Fkpdrdz >y
e} TB

Heat entering element from front=—kpdzd V3

Heat leaving element at bottom

ox
Heat leaving element at left end

=—kadzdz (52+% 7 dv)
Heat leaving element at rear
=—ksdedy (52 +522 o)

The heat-balance equation is

o fpdrdy 3L aTB

—kadydz 3P kydrdz a
—kadydsz (%+ aTBd) kpdzdz (bTB aZ;de)—

bTB o? ,{B bz)

Adxd(

or

szB b’TB 0*Ts__

Simplification in applying boundary conditions (as fully
described on p. 4) and use of the effective gas temperature
Ty instead of the blade temperature T5 as the reference
temperature, that is, use of the substitution

= Trt.c_'TB
change equation (C1) into

2% , 2% 2%
32 T3yt s ™0 )

The origin of the coordinates chosen is shown in figure 2;
the plane 2=0 is the median plane of the rectangular para-
lelepiped and from considerations of symmetry no heat flows
across this median plane. The boundary conditions to be
upplied are

o6

b_.r'=0 when z'=0 {C2) (
.06 . )
@,_0 when y'=0 (C3)
20 0 when z=0 (C4q)
8="T;.—Tp,r when x’=0"

272483 —34——18

0Ty . 027,
=—k3dydz( e 57t 2 dx ) ‘where K, L, M, N, O, P, aud @ are constants.

(C5)

A,,g"_h (T, .— Ti—6) when y'=7" C6)
a.nd‘
26
L_Bb_z=_h Bwhen z=1[2 cn

A solution of equation (11) satlsf) ing the three boundary
conditions (C2), (C3), and (C4) is

6= Z}E(K..,.cosL r’ cosh My .y’ cos Nnz+

m=] p=}

On, ncosh P,y 2" cos @,y cos Npz) (12)

Relations
among these constants are

M, ,*=N,+L,
Pu,u =N1n +Qn'

The boundary condition expressed by equation (C5) leads
to a determination of L. Substitution of equation (12) into
equation (C5) gives

}(m,n=1,2,3,...) (13)

Tge—T5,.,= Z Z‘, (K, x Os Leb” cosh My sy’ cos Npz+

Ml =l

Opn, 5 cosh Py 0" cos @,y cos N..z) (Cs8)

It can be seen that the first member in.the double summation
in equation (12) vanishes when cos L,2’=0; hence, if

L=(1—3)F

from equation (C8) it follows that

Tz,c_TBr ZZO

m=] ne=l

acosh P, b’

This is a Fourier development along %’ and =.

The development of equation (C6) leads to a determination
of Q.. Equation (C8) becomes, w1th the aid of equation (12)
and its derivative,

2 2 ksl

m=] =1

O, a(cosh Py , 2')Q, sin Q, j" cos N, 2]
=> > ho(Tpe—Th

m=1 n=1

K, .(cos Lyz’) M, ,sinh M, .} cos Nyz—

—K.,, s cos L,x’' cosh M, ,j cosNyz—

On.ncosh Py 2’ c0s.Q, j' cos Nnz) (C10)

In order to simplify equation (C10) at the boundary when
y'=7" and to solve for the constant @,, the second summation
in the left member is equated to the last summation in the
right member term by term. Then

t(Tt.c_‘TI) E ZKHI n(LBi‘Im » sinh ‘}In uJ 4

Mmm]lnm]

h; cosh M, ,j’) cos Lyx’ cos Nyz (Cll)

cos @,y cos Nnz (C9) o
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and

L o

>3 > kp0y x(cosh Py, 2@, sin Q7 cos N2

memlnm]

=ﬁ Z")h,o,,,,n cosh P, 2" cos @,j’ cos N,z (C12)

Mml =]

The sums are equated term by term.
determined as any solution of

Therefore, @, is

tan (Q,.j')=;£"b~;=a’%, )

The development of equation (C7) leads to a determina-
- tion of N,,.

o0

> i‘,——k,, I:K,,,,. cos L2’ cosh M,, .y’ (N,,, sin N,, %)‘l'

Ml ol

0., . cosh P, .2’ cos @,y' (Nm sin Ny, %)]=Z“) 2

mul nwml

ko (K,,.,,, cos L.z’ cosh M, .y’ cos N,, %+

O, » cosh Py, 42’ cos Q,y' cos Ny, %) (C13)
or
hor
tan N, __Ic——hx’ m ce
o 2 o (1 8)

The possibility of determining values of K, 4 and O , to
satisfy equations (C9) and (Cl1) has been established in
textbooks on Fourier and other harmonic series (reference 7,
pp. 118-121), and it is only necessary that the values
determined define a convergent series.

Values of K, 5 are determined by integrating equation (C11)
between the limits '=0 to #'=b' and 2=0 to z=r/2 and
substituting the values previously determined for L, and
Nn in equations (16) and (18). The integration is accom-
plished in two steps using the functions cos L,z’ d’ and

cos N,z dz as multipliers, where s and v are integers. For
abbreviation,

R—=ksM, , sith M, oj'+he cosh My o5’ (C14)
Then
xrmbf
ZRK,,. 2 COSs Ny zf \ costL,z’ dz’
mml -
r eyt
—hi(Ty—T)) f cos Loz’ dz’ (C15)

because all the terms
bl
f cos L,z" cos L,2’ dz’
0

vanish if s¥n. Integration of equation (C15) and sub-
stitution of limits lead to the result

r

iRK cos N,,.~ [L ,_l_sm 2L,

mml 1]
—h, [(T' - sln L,.:c ] (C16)
O
or
il'RK;_,. cos Nz (6' sm 2L -b
=tk (T~ e
When equation (16) is used for L,., there results
SYRK,. , cos N, z——-h (T, ~Ty =2 —S - (C18)
3] * BRIV 2n—T)

When equation (CI8) is integrated in terms of z, using
the multiplier cos M,z ds, it follows that

r
2=

ml
RE, . costNnzdz=8, f "cos Nnzdz (C19)
, =0 .

g=2

because all the terms

T

2
f cos N,z cos N,zdz
0 .

vanish if m#e. Upon integration,

RK"‘ u (N +——Sﬂn 2N 2) =5 (smN z) (C20)
or .
sin 2N, =\ 28, sin N, =
RK, ,.(I+ 2)= 2 (C21)
**\2 2N., N,
Therefore,
28 sin N ';' 1
K, y=22r B .
N m% sin 2N, % (C22)
1+ . e
2N, %
Similarly, from equation (C9) it is found that
gin N, =
0, .=2T, 2 1 i - e——
Nn % sin 2N, % (C23)
cosh P, .b’ l—i-——T
2Nm §
where
. in Q, 7 {
Tn=2(Tg,a—TB r) 2z Q J ’ (024)

Q.7 sin 2@, 7
(H' 2Q, ;'
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Finally, substitution of equations (C14) and (C18) in equation (C22) and substitution of equation (C24) in equation (C23)

lead to the following values of-the coefficients Kp x and Op, !

P l)"’ -1 sin N,.2 8h¢(T,_¢—-T;) 1 . ) (14)
m,. R — o) ~1 h N o
1r(2n 1) Nm; sin 2 Nm,,l;' kM, ysinh My o' +hycosh My 7
2 { -l-———;:
2N, 5 ]
and
. T
0 _Sill Qn.'i,_ 4(Tz a_TB r) SLU-N 2 | 1 - (15)
Q. sin 2@, 7\ cosh Py . b’ '
<1+ 5q, sm2N,.;2-
R T
2N, 5
APPENDIX D
ONE-DIMENSIONAL CHORDWISE TEMPERATURE DISTRIBUTION THROUGH SIMPLIFIED SHAPES
Rectangular trailing section of blade removed from in- ~if ho et
. . tanh~'(+—) tanh~'{ %
fluence of rim cooling.—The heat balance for an element of O kgo/ 2 (D5)
= .

the rectangular section is given as follows (fig. 4(a)):
de

Heat entering by conduction (right end)=ksr 5 Ty
Heat entering by convection (sides)=2h,0dy
Heat leaving by conduction (left end)

da a0
=ka ( aytap® )

The heat-balance equation is

10 df d’ﬂ
kar o+ 2hddy=rkar (T+ 750y )
or _
d2
i (D1)
where
2h,
= \kBT-
A solution is
8= (" cosh ¢ (y+Cy) (D2)

where (i and C, are integration constants. The boundary
conditions to be applied in the evaluation of the integration
constants are

a4

Itgf d—'—h;T(TB Tl) hiT(T‘J—TI—'B) When Yy= J (D;)

and

de

kgﬁ=h-.,6 when y=0 (D4)

From equations (D2) and (D4), it follows that
kpCs o sinh (o Cg)=h,Cj cosh (Cy)

and therefore

e 14

when 7 is not too large.
difference between Cy and 7/2 varied from 0.1 to 0.5 percent
for the values of ¢ considered and had no appreciable effect
0.005 foot or more inside the trailing edge.

From equations (D2), (D3), and (D5) it follows that

kst Cse sinh (gj")=hy7[Ty,e— Ti— Cy cosh ()]
and therefore

b (T T .
=22 (D8)

) ) .
‘ @ sinh (<P.7')+k—; cosh (¢j")

Substitution of equations (D5) and (D6) in equation (D2)
leads to the final equation

B (T,.0— T cosh (o7

p sinh (W'H‘

.9—- (1)

cosh ((p )

Trapezoidal trailing section of & blade removed from in-
fluence of rim cooling.—In reference 8, the temperature-
distribution equation along the axis of &’ trapezoidal section
1{? derived. The solution obtained is expressed by the rela-
tion

0=C (20} + C'u'iHo(": )

where Cj and Cy; are integration constants, oJ, and iH, are
Bessel functions, and { is defined as

{l —tan )

s = ®8)

Calculations revealed that the

o7
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where
T kgsinyg
and
y=tan-: (2;3) (D10)

The constants Cy, and €, in equation (D7) may be evaluated
by application of the following boundary conditions:

ae

'(—i?—l—,=0 When y'=0 (Dll)
and
kB a‘,i—;,—h,(T, e— T1—6) When y'=3' (D12)
or
:ig,—O when {=¢, (D13)
and
b b (Tu—Ti—g)when t=g, (D14
5-2 d;.
It follows from equation (D8) that when ¢’ =0,
{1 —tan )7} )
1_ZKI: T (D15)
and when 9" =j’,
. ., Till—tan Y3
:=2K [.7 +_W (D16)
Differentiation of equation (D8) gives
do_ ¢ db |
, dr 2K dy D17)
hence,
de aa +
-(E—O when 3?—0
From the properties of the Bessel functions, -
dJdy)_
==
and
dHa
LB — )
Differentation of équation (D7) therefore gives
dé
d;=—0101J1(@§')+011111(7'3') (D18)
and it follows that
_ Coidi(ify) L
Co="TrG15) D19)
when
de

From equation (D12), with the use of equations (D7) and
(D17), it1s found that

kg Zf_f [—Cti(tte)+ CuHL (i £3)]
=h| Ty e—Ti— Crodo(ita)— Ct Ho(i L o) (D20)

The velues of the integration constants Cy and C;; are
now found by solving simultaneously equations (D19) and
(D20). Insertion of these values in equation (D7) gives the
desired equation for the temperature distribution through
a trapezoidal section

Ik . e p e sy e
o 2K='L (T, e— T EHL () Jo( )+ TG )T H(EE)] 0

[IGEEL G~ (HLG 6 TG0+ g peshe T

where
P=H,(¢ )t +i iGN IL(i ¢
For a wedge, r;=0. Then, from equation (D15) it is seen N

that {;=0, and asa consequence, H,(1{) = « and 1J,(i ;) =0.
Equation (20) then simplifies to

Tt (T = TYI(E)°
=7 : (21
SR, S —1d1EE)

Concentrie circle annulus approximation for blade leading
edge.—The derivations of the equations giving blade tem-

peratures at the inner and outer edges of the annular region
are given as follows (fig. 4(c)):

Heat entering from hot gas=27 22 D, h,,(T, «—T5,) (D21)

Heat flowing over circle with dmmet,er

_ ¥ dTs
D=2 g 5 <D) (D22)
Heal leaving to coola,nt=21r > t h(Tp—T5) (D23)
A solution of ‘equation (D22) is
D
TB=(2_TQ?;) log, (Cu ‘2") (D24)

where C); is an integration constant.
boundary econditions

Tp=T5,when D=D,

Application of the

and
Ty=T5 « when D=D,

to equation (D24) results in the elimination of €y and an
evaluation of @, namely,

(9 2
TB,o'—TB,t _<21rk3> IOge &
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or

Q _QTkB(TB. a'_"TB, i)
- D

Iog,ﬁ

(D25)

From simultaneous solutions of equations (D21), (D23), and
(D25) it is found that '

Tee

TB,c—TB,£= LB 2 (25)
1+1 D.\D.F. D,h
0 . D‘

From a simultaneous solution of equation (D24) and equation
(D24) with the inner boundary condition applied and use of
equation (D25), it is found that

D

log;E
TB=T3,1+ D (Tx.o_

log,ﬁ:

Ts,1) (24)

From equations (D23) and (D25) and from equations (D21)

and (D25) there are obtained

9
Ts,=T+ 2k5 D (Ts,0—Ts,q) (22)
D( h{ ].Oggﬁo
t
and
ks
Tp=Tee— ——2—D(TB o—7T5,:) (23)
Dk, log.D _
:

Equations (22) to (25) express the blade temperatures in
terms of known quantities.

Section of blade apprommated by parallel pla.tes —The
derivation of the equations expressing the blade temperatures
at the inner and outer edges of & blade section approximated
by a region between parallel plates is given as follows
(fig. 4(d):

@ =heat entering from the hot gas=~h(Ty ,— T ,)
=heat leaving to the coolant=~A(Ty — T7)

¢ =heat flowing through the section=k;” (Tp,0—T5,1)

where ¢ is the distance between the plates. Equating these
heat flows results in the following system of equations:

K (o T )= (Te— To. )= (T~ T) (D20

A simultaneous solution of equations (D26) gives

Tz'{' (h Tg ¢+h Tl)
Ts1= (26)
T2 (R
and
la+ (h Tx.c+h Tl) i
Ts.= @n
m(h.+h¢)
From equations (26) and (27) it follows that
Ts,o—Tp1= 1[:,,.—T¢ - (D27)
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